Comparative Response of Platelet fV and Plasma fV to Activated Protein C and Relevance to a Model of Acute Traumatic Coagulopathy

نویسندگان

  • James E. Campbell
  • Michael Adam Meledeo
  • Andrew P. Cap
چکیده

BACKGROUND Acute traumatic coagulopathy (ATC) has been linked to an increase in activated protein C (aPC) from 40 pM in healthy individuals to 175 pM. aPC exerts its activity primarily through cleavage of active coagulation factor Va (fVa). Platelets reportedly possess fVa which is more resistant to aPC cleavage than plasma fVa; this work examines the hypothesis that normal platelets are sufficient to maintain coagulation in the presence of elevated aPC. METHODS Coagulation responses of normal plasma, fV deficient plasma (fVdp), and isolated normal platelets in fVdp were conducted: prothrombin (PT) tests, turbidimetry, and thromboelastography (TEG), including the dose response of aPC on the samples. RESULTS PT and turbidimetric assays demonstrate that normal plasma is resistant to aPC at doses much higher than those found in ATC. Additionally, an average physiological number of washed normal platelets (200,000 platelets/mm3) was sufficient to eliminate the anti-coagulant effects of aPC up to 10 nM, nearly two orders of magnitude above the ATC concentration and even the steady-state pharmacological concentration of human recombinant aPC, as measured by TEG. aPC also demonstrated no significant effect on clot lysis in normal plasma samples with or without platelets. CONCLUSIONS Although platelet fVa shows slightly superior resistance to aPC's effects compared to plasma fVa in static models, neither fVa is sufficiently cleaved in simulations of ATC or pharmacologically-delivered aPC to diminish coagulation parameters. aPC is likely a correlative indicator of ATC or may play a cooperative role with other activity altering products generated in ATC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement of Factor V Activity in Human Plasma Using a Microplate Coagulation Assay

In response to injury, blood coagulation is activated and results in generation of the clotting protease, thrombin. Thrombin cleaves fibrinogen to fibrin which forms an insoluble clot that stops hemorrhage. Factor V (FV) in its activated form, FVa, is a critical cofactor for the protease FXa and accelerator of thrombin generation during fibrin clot formation as part of prothrombinase (1, 2). Ma...

متن کامل

Secretable human platelet-derived factor V originates from the plasma pool.

Factor Va (FVa), derived from plasma or released from stimulated platelets, is the essential protein cofactor of the prothrombinase complex. Plasma-derived factor V (FV) is synthesized by the liver, whereas the source of the platelet-derived cofactor has not been unambiguously identified. Megakaryocytes, platelet precursors, are known to synthesize platelet proteins and to endocytose proteins f...

متن کامل

Correlates of plasma and platelet tissue factor pathway inhibitor, factor V, and Protein S

Background Plasma Tissue Factor Pathway Inhibitor (TFPI) circulates bound to factor V (fV) and Protein S (PS). Estrogen therapy decreases plasma TFPI and PS. TFPI, fV, and PS circulate within platelets, and are released upon activation to modulate thrombus formation. Objective Identify factors affecting the concentrations of plasma and platelet TFPI, fV, and PS. Methods Blood samples were o...

متن کامل

Combined Factor V and VIII Deficiency

This review summarizes current data on the pathomechanisms and new genetic findings of combined factor V and VIII deficiency (CF5F8D). Congenital haemorrhagic disorders characterized by deficiency of two clotting factors comprise an interesting group. Among dual coagulation disorders, CF5F8D is the most common type. For the first time combined factor V and VIII deficiency (F5F8D) was reported b...

متن کامل

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Biosynthetic origin and functional significance of murine platelet factor V

Factor V (FV), a central regulatory protein in hemostasis, is distributed into distinct plasma and platelet compartments. Although platelet FV is highly concentrated within the platelet -granule, previous analysis of human bone marrow and liver transplant recipients has demonstrated that platelet FV in these individuals originates entirely from the uptake of plasma FV. In order to examine furth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014